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LETTER TO THE EDITOR 

The accuracy of the Hartree-Fock approximation for 
quantum dots 

N F Johnsont and M Reina 
Depanamento de Fisica, Universidad de Los Andes, Bagota, AA 4976, Colombia 

Reeeived 8 September 1992 

AbsheL We investigaIe Ihe accuracy of the Harlree-Fwk (HF) and Hartree (H) 
approximations for calculating energies in an N.elecVon quantum dot. The HP and 
H energies calculated from an analpically solvable madel Hamiltonian are compared 
to exact energy solutions. The HF and H appmimations become les~ accurate with 
increasing number of electmns, decreasing magnetic field, increasing dot size and 
increasing electmn-electmn interaction strength. ?be dependence on clenmn number 
is mntrary to the well knmn infinite electmn gas result. 

Current flexibility in semiconductor processing allows fabrication of zerodimensional 
quantum dots (see, e.g., [l]) which are islands of quasi two-dimensional electrons 
formed by the additional confinement of a ZD electron gas within the plane. Each dot 
can contain anywhere from a few to hundreds of electrons [l]. A full understanding 
of the many recent optical and transport measurements on quantum dots requires 
detailed knowledge of the energies of the N-electron dot. However, the relevant 
energy scales, such as the single-electron confinement energy, the cyclotron energy, 
and the electron-electron interaction strength, are typically comparable making 
treatment of the many-body problem difficult. Apart from the computationally 
intensive approach of direct numerical diagonalization of the Nelectron Hamiltonian 
[2], the Hartree [3] approximation has been used. However, the accuracy of standard 
many-body theories, which are often based on mean-field approximations (e.g. Hartree 
or Hartree-Fock), is unclear for few-electron systems. 

This paper investigates the accuracy of the Hartree-Fock (HF) and Hartree (H) 
approximations for calculating the properties of an interacting N-electron gas in 
a quantum dot, subject to an external magnetic field. Algebraic expressions are 
obtained for HF and H energies of an analytically solvable model Hamiltonian of an 
N-electron dot [4,5], and are compared to the exact result. We find that both HF and 
H approximations become less accurate with (i) increasing number of particles, (i) 
decreasing magnetic field, (iii) increasing dot size and (iv) increasing electron-electron 
interaction strength. The dependence on electron number appears to be opposite to 
the result for an infinite ZD (see, e.g., [6]) or 3D (see, e.g., [7)) electron gas, where the 
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HF approximation improves with increasing electron density. The resolution of this 
apparent contradiction lies in the non-linear N-dependence of the electron density 
in quantum dots with ‘soft-wall’ (parabolic [l]) confinement potentials. We finish by 
discussing the validity of Koopmans’ theorem [SI. 

Our exactly solvable model Hamiltonian for an isolated ZD quantum dot in a 
perpendicular magnetic field B is given by [4,5] 

(1) 

The parabolic dot lies in the I-y plane and contains N interacting electrons with 
effective mass m*, negative charge -e, g-factor 9’. spatial coordinates { r i ) ,  and spin 
components { s i , + )  along the z-axis. The momentum and vector potential associated 
with the ith particle are pi and Ai respectively, and pB is the Bohr magneton. Many 
recent experimental studies of infrared absorption in semiconductor quantum dots (11 
have shown the parabolic confining potential to be realistic, based on the generalized 
Kohn theorem [9]. The interaction potential is given by the first two terms in the 
Thylor series expansion of a cut-off Coulomb interaction 

(2) 
I 2 2 V(ri - pj) = 2V, - ?m*Q Ipi - rjl + .  . . 

where V, and f? are positive parameters which can be chosen to model dots of 
different sizes and materials [4]. The saturation of V(ri - pj)  for small electron 
separations models the effect of the finite electron wavefunction spread along the 
perpendicular (2) direction (see later discussion). The HF approximation proceeds 
[7,10] by constructing a totally antisymmetric state from individual single-electron 
spin-orbital functions ( b i ( z ) )  by means of a Slater determinant. Following [lo] we 
use zi to denote the 4~ manifold of space and spin coordinates of the ith electron; 
each spin-orbital function b i ( z )  corresponds to a product of a spatial wavefunction 
and a spinor. Acting with the Hamiltonian H on the Slater determinant, and 
minimizing with respect to the individual values of 4, yields the following set of 
N integrodifferential equations ( i  = 1,. . . , N): 

H,eQi(2) = € & ( Z )  (3) 

where 

Hf‘ = H,+~jdz‘di;(2’)V(z-z1)(1- Pij)4j(z’) (4) 

with Pij an operator which exchanges the subscripts i and j occurring to the right 
of it. The interaction V ( z  - z’) given in (2) is diagonal in the spinor basis, and 

Ho = (1/2m’)(p+ e A / c ) ’ +  ;m*w:1v1* - g*pBBsz. (5 )  

The total HF energy for the N-electron gas can be written as 
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where 

Hi = dzq5T(z)Huq5i(z). J 
The direct and exchange integrals are given respectively by 

(7) 

Jij = / / d z d z ' B : ( z ) q ( z ' ) V ( z  - z ' ) + ~ ( z ' ) + ~ ( z )  

ICij = 1 /d*dz '4;(z)4;(z1)V(z - z')di(z')dj(z). 

(8) 

(9) 

The H energy EH differs from EHF through the absence of the exchange integrals 
( I C i j  = 0 in equation (6)). In order to solve the self-consistent HF equations, we 
follow the standard method of Roothaan [10,11] in which the spin orbitals 4 are 
expressed as linear combinations in a given set of basis functions, 

N' 

,A(.) = C C i , X , ( d .  (10) 
0 = l  

The set of HF integro-differential equations (equation (3)) can then be transformed 
into an equivalpnt set of algebraic equations for the coefficients ci0 [lo]. For a 
given basis set {x,} an initial set of coefficients cia must then be chosen, and the 
algebraic Roothaan equations [lo] iterated to obtain self-consistency. In general this 
is a heavy computational task A suitable choice for the set {xu] are the single- 
electron states corresponding to an electron in a ZD parabolic potential subject to an 
external magnetic field [12]. With ( T ,  0) denoting the polar coordinates in the z-y 
plane we have the (unnormalized) spatial part of x,(z) given by 1121 

x!, ( r )  = exp( -ilO) exp( - [m* wu( B )  /2h]rZ) T I ' I  LLI ( [m'wu( E )  /h]r2) (11) 

where L; ( z )  are  associated Laguerre polynomials; w,,(B) = J(w$ + w,:/4) and 
the cyclotron frequency wc = eB/m'c.  We consider the external magnetic field to  
be sufficiently large that the electrons in the dot are  spin polarized. In the InSb 
quantum dots of Sikorski and Merkt [l] where hw, = 7.5 meV, a field as small as 
3 T is sufficient to ensure spin polarization for N = 4 electrons. The magnetic field 
required for spin polarization also guarantees that all the electrons lie in the lowest 
Landau level (n = 0, I 0) in the absence of electro-lectron interactions (13). For 
computational simplicity we employ the socalled minimum hasis set [10,11] where 
N' = N. The number of basis functions therefore equals the number of electrons in 
the dot. Later we will discuss relaxation of this constraint. 

The selfconsistent HF equations can now be solved analytically, yielding the HF 
total energy for N electrons 

EHF = f N ( N +  l)hw,(B)-:N(N- 1)(N+2)hRZ/w,(B) 

(12) - 3 N ( N -  1 1+4C)hwc+N(N-1)V, 

where C = g*m'/4mo Likewise the H energy is given by 
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The corresponding exact energy solution of H is given by 

E = t i w u ( B ) + ~ ( N - 1 ) ( N + 2 ) h ~ , ( B ) - ~ N ( N - 1 + 4 C ) T w , + N ( N - 1 ) V ,  

(14) 

where n,(B) = ,/(U:( B) - N R Z ) .  If the electron-electron interaction parameter 0 
is small (i.e. the electron-electron interaction is nearly constant across the diameter 
of the electron gas), we have 

nu(B) = d-% w u ( B ) ( l -  NnZ/zw:(B))  (15) 

and the expression for the exact energy E now becomes equal to the HF energy EH,. 
For general values of n, EHF is larger than E since the variational HF procedure 
provides an upper bound to the energy. The difference between E, and E is the 
so-called correlation energy. 

S M d  hwc(m.YI 

Figum 1. Fractional ermr ( E H F  - E ) / E  of the 
HF appmimatian (solid line) as a function of 
the hw, (magnetic field) for different N (electron 
number). Also s h w n  is the fractional error for the 
H approximation (dashed line). The parameters 
used in equations (12H14) correspond to hwo = 
15 meV, Vo = 5 meV, hR = 5.6  meV and 
c = 0.007. 
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Figure 2. Fractional error (EMF - E ) / E  of the 
HF approximation (solid line) as a function of 
the ratio of il (electron-elearon interaction) to 
YO (dot confinement) for different N (eleamn 
number). Also shown is the fractional ermr for the 
H appmimation (dashed line). Dot parameters are 
as in figure 1, and hw, = Zhwo = 30 meV 

Figure 1 shows the fractional error ( EH, - E ) / E  of the HF approximation (solid 
line) as a function of the magnetic field for different values of N, the number of 
electrons inside a quantum dot. Also shown is the fractional error (EH - E ) / E  
for the H approximation (dashed line). Figure 2 shows the Same quantities as a 
function of R/w,, the ratio of the electron-electron interaction parameter n to the 
confinement wU. We first comment on the behaviour in figures 1 and 2 for fixed N .  
As expected E,, and E, are always greater than E. In addition E,, represents a 
better approximation to the exact energy E than does E,. In figure 1, the fractional 
error A E / E  at fixed N for both the HF and H approximations shows a slight 
initial increase with magnetic field, before decreasing steadily as the magnetic field is 
further increased. The close agreement between E,, and E, at high magnetic field 
follows from the shrinkage of the individual electron wavefunctions, which leads to a 
decreased importance of the Pauli exclusion principle and hence of exchange effects. 
It is interesting to note that a n  increase in the magnetic field will increase the effective 
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confinement wu( B ) ,  and reduce the size of the electron gas droplet. The effective 
density of the electron gas, defined as N / A  where A is the area of the droplet, will 
therefore increase as the magnetic field increases. This overall improvement of H F  
and H with increasing density agrees with the trend for an infinite ZD [6] or 3D [7] 
electron gas. Figure 2 shows that both the HF and H approximations become worse 
as the electron4ectron interaction parameter R increases. The electron4ectron 
interaction is now varying more rapidly with electron separation, and the mean-field 
description of the electrons is breaking down (i.e. correlation effects are becoming 
more important). Figure 2 also shows that both HF and H approximations become 
worse with decreasing wW A decrease in wu is equivalent to an increase in dot size, 
enabling the electron gas droplet to expand and hence reduce its effective density. 
Once again we have the same density dependence as for the infinite electron gas. The 
most surprising feature from figures 1 and 2 is that both HF and H approximations 
become worse as the number of electrons N i e  ir >.;ed, which seems contrary to 
the infinite gas result for increasing densities. 'ine G.,planation is that the 'soft' walls 
of the parabolic dot potential allow the electron gas to  spread out as N is increased. 
The effect on the effective electron gas density N / A  as N increases is therefore non- 
trivial. When R = 0 the area A of the electron droplet is essentially proportional 
to N, hence the electron gas density is independent of N .  As R is increased, the 
droplet size A actually increases faster than N ,  implying a decrease in density. We 
note that for (R/uU) > N-*12 in figure 2, states with higher angular momentum 
become lower in energy than the state with energy E considered until now [14]. The 
minimal hasis set chosen in the present calculation is therefore no longer suitable, 
and we have consequently truncated the curves in figure 2 at (i2/wu) = N-'IZ.  The 
accuracy of the H F  approximation for these states will be analysed elsewhere. 

The HF solution presented above can be improved upon by increasing the size N' 
of the minimal basis set. In particular, states from higher Landau levels (n > 0, 1 2 0; 
n 2 0,l < 0) should be included. For N > 2 the subsequent HF (Roothaan) algebraic 
equations cannot easily be solved analytically. However, for N = 2 electrons in the 
singlet state, we have managed to obtain analytic solutions including basis states from 
all Landau levels (i.e. N' is infinite). The resulting HF energy is given by 

while the exact energy is 

Performing a series expansion of EHF in equation (16) yields terms to all orders of the 
electron-electron interaction parameter Oz. This is in contrast to the minimal basis 
solutions presented earlier which only accounted for the electron-electron interaction 
to order R2. However, the coefficients in the expansion of EH, still only agree 
with those in the expansion of E to order R2. Even though we have gone beyond 
the minimal basis set solution, we still have the results that the HF approximation 
becomes worse with decreasing magnetic field, increasing dot size (i.e. decreasing wo), 
and increasing electron4ectron interaction R. 

The above HF energies allow us to comment on the validity of Koopmans' 
theorem [S] for quantum dot systems. Within the HF approximation, the ionization 
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energy associated with removing the Nth  electron from the dot has magnitude 
I ,  = EHF( N )  - EHF( N - 1) where EHF( N )  is the HF total energy for N electrons 
given in equation (12). Koopmans’ theorem states that I, = e,,, where e, is 
the HF one-electron energy for orbital N given by equation (3). However, it is 
straightforward to  show from equation (12) that 

I ,  = e ,  + NR2/2w,(B). 

As is the case for the HF approximation itself, Koopmans’ theorem therefore loses 
its validity with increasing electron number N, decreasing magnetic field, increasing 
dot size and increasing electron-electron interaction R. Note that the energy I ,  
is of direct physical importance in quantum dot tunnelling measurements, since it is 
essentially the energy of the conductance peak arising from an Nth  electron tunnelling 
on to a dot containing N - 1 electrons. 

Finally we emphasize that the true form of the electron-electron interaction 
V(ri - r j )  in experimental dots is unknown; it will differ from the Coulomb form 
due to image charges in adjacent layers and gates, and the finite extent of the 
electron wavefunction in the z-direction. Indeed V ( r i  - r j )  may not actually be 
translationally invariant. Although the simple model form used in this paper is not 
the most realistic, it has allowed us to investigate onulyficully the accuracy of two 
standard many-body theories in quantum dot systems. Any improvement upon the 
present results by employing a more realistic form for the interaction is certain to 
require heavy numerical computation. 

We thank L Quiroga for useful discussions. This work was supported by 
COLCIENCIAS (Colombia), the Comite de Investigaciones de la Univenidad de 
Los Andes (Colombia), and by St John’s College, Cambridge (UK). 
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